Comparing the Drivers Involved in Fatal and Serious Injury Collisions using Geodemographics

Law Enforcement and Public Health conference
23rd October 2019
James Nunn
The societal problem

Fatalities. Reported road casualties in Great Britain: 2018 annual report, Department for Transport, 2019

Serious injuries. Reported road casualties in Great Britain: 2018 annual report, Department for Transport, 2019

There had been steady decline in fatal and seriously injured casualties until 2010. Since then the numbers have plateaued.

Fatalities. Reported road casualties in Great Britain: 2018 annual report, Department for Transport, 2019
Background

- Education interventions and public information are applied to whole populations
- Direct marketing methods using geodemographics to target specific audiences can be effective (Ashby and Longley, 2005; Tapp, Whitten and Housden, 2014; Leventhal, 2016)
Geodemographics

• Segmentation of the population by combining geographic, census and lifestyle data
• Acorn (CACI Limited, 2014) geodemographic profiles have three levels of granularity
• The coarsest level distributes the population into 6 categories, the mid level uses 18 groups and the finest 62 types
• The 62 types, used in this analysis, run from 1 to 62, the lower the number the more affluent the segment
Geodemographics

Type 1
Exclusive enclaves

Type 33
Smaller houses and starter homes

Type 59
Deprived areas and high-rise flats
Aim

• Determine if the geodemographic profile distributions of motor vehicle drivers involved in serious injury (MAIS3+) and fatal collisions are suitable to target interventions for one UK geographic area.
Objectives

1. Geodemographic profiling of the motor vehicle drivers involved in fatal and MAIS3+ collisions.

2. Compare the geodemographic distribution of culpable drivers and non-culpable drivers from fatal collisions and MAIS3+ collisions.
Data Origins

• Police collisions data for the county of Cambridgeshire for the period April 2012 to March 2017 linked to hospital trauma patient data to identify collisions resulting in MAIS3+ injuries (AIS 2005) (Nunn et al, 2018)

• Motor vehicle drivers only from the MAIS3+ collisions and the motor vehicle drivers from the fatal collisions were culpability scored using the Robertson and Drummer (1994) culpability scoring tool.
Dataset

- Motor vehicle drivers from fatal and MAIS3+ collisions in Cambridgeshire for the period April 2012 to March 2017 who reside in Cambridgeshire and have a valid postcode (n=371, Fatal n=137, MAIS3+ n=234)
- This is 65% of all the drivers involved in the collisions (n=661), the surrounding counties account for a further 24%
- Examining Cambridgeshire drivers n=370 presented a valid geodemographic profile (Fatal n=137, MAIS3+ n=233)
Risk Index

- Risk Index is a way of presenting the frequencies in terms of the background population or a baseline (Anderson, 2005; 2010; Ashby and Longley, 2005; Loo and Anderson, 2016)
- Three stage process to calculate the index
 - Acorn type population proportion = \(\frac{\text{Acorn type frequency in the population}}{\text{Total Acorn types present in the population}} \)
 - Expected frequency in the sub-population = Acorn type population proportion \(\times \) Sub-population size
 - Risk index = \(\frac{\text{Actual Acorn type frequency in the sub-population}}{\text{Expected Acorn type frequency in the sub-population}} \times 100 \)
Risk Index – Acorn Type – MAIS3+ – Culpable and Contributory Drivers

These 10 types account for 56% of the drivers in this sub-population, 38 types were present.
Risk Index – Acorn Type – MAIS3+ – Culpable and Contributory Drivers
Risk Index – Acorn Type – Fatal – Culpable and Contributory Drivers

These 10 types account for 58% of the drivers in this sub-population, 33 types were present.
Risk Index – Acorn Type – Fatal – Culpable and Contributory Drivers
These 10 types account for 53% of the drivers in this sub-population, 42 types were present.
These 10 types account for 56% of the drivers in this sub-population, 38 types were present.
Implementation

Over-represented groups can be targeted with interventions.

Further geospatial analysis can determine clustering of the geodemographic types to allow targeting of interventions focussed on reducing the prevalence of cluster populations in serious injury collisions.
References

Any Questions

• James Nunn Email: J.Nunn@lboro.ac.uk

Acknowledgements
Co-authors

• Jo Barnes, Andrew Morris, Emily Petherick. Loughborough University, Epinal Way, Loughborough, LE11 3TU, UK

• Roderick Mackenzie. Cambridge University Hospitals, Addenbrookes Hospital, Hills Road, Cambridge, CB2 0QQ, UK. Roderick.mackenzie@addenbrookes.nhs.uk

• Matt Staton Email Matt.Staton@cambridgeshire.gov.uk

Thanks to Cambridgeshire County Council, Cambridgeshire Constabulary and Cambridge University Hospital for providing the data and facilitating the process and the Road Safety Trust for funding the project